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ABSTRACT

The Extended Corresponding States (ECS) model has been extensively studied for
representing the thermodynamic surface of pure fluids and mixtures in the aR(r ,T)
form and the most advanced version is currently the one for HFC [1], but the shape
factors J(r,T) and j (r,T) have yet to be determined as analytical functions for the
whole Pr T surface of a pure fluid.

For a sample of pure halocarbons (HA), this work aims to solve the fundamental
problem of determining the individual shape functions on the entire PrT domain
through an innovative predictive procedure using a density model requiring only a
single saturated liquid density input. An original algorithm using artificia neural
networks (ANNS) enables the determination of the J(r,T) and j (r ,T) functions from
a priori knowledge of their functional forms. The proposed algorithm focuses on the
determination of the residual Helmholtz energy aR(r ,T) for each fluid, subsequently
allowing any other thermodynamic residual function to be calculated through the first
and second derivatives of temperature and density. For each fluid studied, the model has
been validated for residua functions against the same functions coming from highly
accurate DEOS. The prediction accuracies reach AAD values ranging from 0.3 to 7.8%,
gpanning from vapor and liquid regions to supercritica conditions, while the

corresponding results of the ECS method range from 0.54 to 20%.

KEY WORDS: Density, Extended Corresponding States, Feed forward neural
networks, Fundamental equation of state, Helmholtz energy equation, Refrigerants,

Residual functions.



1. INTRODUCTION

The theoretical background for the Corresponding States is based on a similitude
hypothesis of the potential energies for the components of a family of fluids [2,3]. The
fluids pertaining to a family meeting this requirement are considered to share a
condition of conformality, which is intended as a potentia energies similitude. This
implies the similitude of the y (P,r ,T) surfaces of each fluid, where P is the pressure,
r the density and T the temperature. Thus, if two fluids i and j pertain to a conformal

family, then:
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from which it follows that an f function:
P=1(TV,) v
is the same for al the conforma fluids. In egs. (1,2) V is the volume, while the
superscript ¢ and the subscript r indicate the critical and reduced values, respectively.
Then al the derived residual state functions are conformal, too. In particular, it has

been demonstrated through further developments of statistical mechanics theory [1,4]

that the fundamenta conformality condition can be reduced to the following relation:
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where a® is the residua Helmholtz free energy. It emerged that this relation is not
satisfied even for the noble gases and the fluids considered here. A correction to this

model is consequently needed, the detail of which is shown later on. Nonetheless, a

knowledge of the y (P,r T) surfaces is now available, with the highest possible



accuracy, from DEOS in the form developed following the Schmidt-Wagner technique
[6]. The fluids considered in this study are indicated in Table 1, together with the limits
of validity of their DEOS. First of al, two grids in the independent T,, P, variables were
set up with the steps indicated in Table 2 for ANN training and validation, respectively.
The training set counts approximately 600 points in al, while the validation set is
composed of more than 5000 points. The ranges of T, and P, were then selected for each

fluid in order to observe the single range of validity for the DEOS, Table 1.

2. ECSIDENTITIES

According to classical ECS theory, two fluids are considered conformal if they obey

the following condition:
R( )_ R
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in which subscripts 0 and j stand for the reference fluid and the fluid of interest,

respectively. A DEoSonthe a, (r,,T,) form is then needed for the reference fluid.

In a two-parameter Corresponding States framework, the condition of eg. (4) would
be satisfied by “distorting” the independent variables through the constant scale factors
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As aready mentioned, this is not sufficient for the real fluids and a further correction

to the former “distortion” has to be introduced by means of the shape factors q; (r j ,Tj)

andfj(rj,Tj):
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From the fundamental relation, eg. (4), the formalism to obtain any thermodynamic
property can now be developed. Restricting our attention to the more frequently applied

thermodynamic functions, the following hold true:

z"=u,"F, +2,%(1+H, ) ©)
u=u,"(1- F)- Z,°H, (10)
S =8 - U F-ZyH; (12)
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3. NEURAL NETWORKS

A new model is proposed here, based on the combination of ECS theory with neural
networks (NN). Neural networks are versatile function approximators. We have chosen
to represent both of the shape factors by means of a single Multi-Layer Feedforward
Network (MLFN) with 2 outputs, i.e. the shape factor functions, egs. (7,8), since these

take effect smultaneoudly, distorting the independent variables that enter the reference



fluid DEOS, eq. (4). The NN are used here to represent the shape factors J; = J, (T< r. )

Jr
and f :fj(Tj,r j) as functions of the independent variables (Tj,rj).
Fig. 1 shows the genera architecture of a three-layer Feedforward Neural Network in
which the two values of the input layer, Ui and U, represent the independent

thermodynamic variables, each related to reduced temperature and reduced density. The

two values of the output layer, S and S, represent the shape factors J, =J, (Tj ,r j)
and f, =f (T,,r ). For the sake of neural network generalization, both input and

output values are compressed here within the same range 0.05, 0.95. The transfer
function used here is a sigmoid function of the form:

1

f(X):a1+e-2bx

(18)

Two parameters have been applied in eq. (18) to make the function’s behavior more
flexible: a changes the activation span and b determines the steepness of the sigmoid

function. The neural equation has some parameters set at the following values:

| =3 Bias1=1.0 A,,=005 a=10
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and its analytical formis:
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H,., = Bias 2
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U, =Bias1

In our caseitis:

d) w=f(r, d)

r,j?

V=T,  V,=d =(r/r?),  w=30,,

The following parameters have to be defined according to the specific problem. Jis
the number of neurons in the hidden layer and, in our case, it was found that 7 was an
ideal compromise between computation speed and accuracy of the resulting function.
Viini ad Vimaxi are the limits of the independent input variables for the training set;
Whink ad Whaxk are the limit values of the shape factors for their generalization that, in
this case, were set between 0.8 and 1.2. Due to the general form of the MLFN selected

for application to the present problem, Fig. 1, the NN weighting factors are 21 for the

first matrix w; and 16 for the second matrix w,,, for a total of 37 weighting factors.

The values of the weighting factor matrixes, w;, and w, , are the ECS-NN EoS

parameters, i.e. the unknowns of the proposed EoS which have to be obtained

individually for each fluid of interest through an optimization procedure [14].

4. MLFN FUNCTION APPROXIMATOR TESTING

First we verified the ability of this model to approximate the fundamental

thermodynamic function aJ.R(Tj . ) of one of the fluids considered. We selected R134a

as the reference fluid and chose to approximate the a?(TJ. T j) DEoS function of R32.



We generated a?(Tj ,rj) data from the R32 DEOS in vapor, liquid and supercritical

zones, as specified in section 2, and then trained the network with said data. The

objective function assumed was:
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The aJ.R(T]. r j) ECS-NN EoS obtained was tested against the above validation set,
demonstrating that the original data were globally approximated with an AAD of less
than 0.3 %. on the a® values. The mode can thus approximate the fundamental
thermodynamic function a'f(Tj ,r j) to a very good degree, even for the most difficult

fluid to represent among those considered here, as explained below.

5. REGRESSION OF A MLFN ON GENERATED DENSITY DATA

Neural shape factors can be determined not only from ajR(TJ. r j) data, but also from
any kind of thermodynamic value, providing the appropriate ECS identity is given, e.g.
egs. (4) and eg. (9) through (13). We implemented the regression of R T data in the
three zones and on the saturation line. We used a DEOS to generate a set of Pr T points
in the vapor, liquid and supercritical zones and on the saturation line. This training set
counts approximately 600 points in the 3 zones and is described in section 2. For the
bulk-phase regression we considered the following objective function:
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where (Zf)calcis given by eg. (9), while at saturation a second objective function was

considered:
oo =14 [l ) - i )] @

where Inj ;is given by eq. (28) combined with eq. (13):

Inj =g®-InZ (28)

The EoS parameter optimization process was developed using an overall objective
function which was selected as a linear combination of the two former functions, egs.
(26,27):

f =0.9xf , , +0.1xf , , (29)

ob, overall

After training the network, we tested the mode’s ability to reproduce the

fundamental thermodynamic function a].R(Tj . ) and its first partial derivatives related

to Z, (‘I’l ,r]) and uJR( UY ]) The results are shown in Table 3. Looking at the case of
R32, which was formerly studied for the aJ.R(T]. r j) function approximation, its
weighted average error deviation for the three zones was 0.4. This figure is only dightly
higher than the 0.3 of the former case, so the ECS-NN EoS can be trained on a derived
guantity, such as density, without any substantial loss of accuracy on the fundamental

surface a'f(Tj . ) The u® function, which is related to a® through the temperature

first derivative of the shape factors, egs. (10,14,16), can aso be represented well.
We then tested the model for the prediction of Z (T, ,P), ajR(TJ. P]) uJ.R(T]. PJ)
h. (T] ,PJ) (T],PJ) g (‘I’J ,P]) and Inj j(Tj ,PJ.). An inversion is aways needed for

practical uses, due to the default choice of T,P as independent variables. The different



choice of independent variables in this second case demands an iterative procedure to

find a solution for r | (T. P ) The results of the validation study are shown in Table 4.

it
The model volumetric accuracy can be evaluated through the Z, (TJ. ,Pj) function; the
AAD achieved is comparable with the corresponding value of a Schmidt-Wagner
multiparameter DE0S. The residua functions are also well represented, with sk
deviating in the vapor phase a a maximum of 4.15% with respect to a DE0S, whose
error deviation for this function (and for some others) is unknown. It is worth
emphasizing that the upper limit of the liquid phase was globally less than 1%.

Finally, as proof of its consistency, saturation pressures and saturated liquid and

vapor densities were calculated from the model through the VLE condition j  =j ,, on

the saturation line. The results are presented in Table 5. These three values have to be
considered as the residual deviation errors for the final EoS, because all three were used

in the minimization objective function.

6. REGRESSION OF A MLFN ON DATA FROM A PREDICTIVE

VOLUMETRIC MODEL

In this case, the ECS-NN EOoS is trained on density data generated with a volumetric
model previously developed by the Authors [15,16,17]. The volumetric model enables
the predictive generation of approximate Pr T data, on which our ECS modd was
subsequently trained. Since the volumetric model needs no more than one experimental
saturated liquid density value, the great advantage of this approach is predictivity. The
method for developing this model is quite similar to the one described in the former

case for “exact” density data. As reference fluids R12 and R134a were selected.



We compared the performance of our ECS-NN model, trained on data generated
from the density model, with that of the Huber-Ely ECS mode [1]. Both models aim for
predictivity, though the latter also requires a saturated liquid volume correlation.

The validation results for our model are shown in Table 6. Because the density data
used to train the model are less accurate than in the previous case, a certain drop in
precison with respect to the former case is inevitable. This is evident for the
supercritical zone in general and particularly for R32, which is aways the most difficult
fluid to reproduce. The volumetric precision is very good in vapor and liquid phases,
with average AAD lower than 0.3 and 0.6 % respectively, but in the supercritical zone it
rises over 2.5 %. Generaly speaking, the results obtained for the various residual
potential functions vary from fluid to fluid and aso from one zone to ancther. The
functions AAD in the liquid zone are around 1 %, while the AAD for the supercritical
and vapor zones come between 1 % and 4 %, with only one case exceeding said values,
i.e. s¥ inthevapor phase, where an AAD of 7.8 % is reached. The validation results of
the ECS-NN model on the saturation line are shown in Tab. 7; aso in this case the
prediction accuracy is worse with error deviations about two times greater. The
validation of the Huber-Ely [1] ECS modédl is shown in Tab. 8. The AAD on PrT datais
around 0.5 % for the liquid, and less than 1.5 % for vapor and supercritical zones. The
residual potential functions AAD in the liquid zone are usualy below 1.5 %, while the
AAD of the vapour phase are significantly greater, generally between 8 and 15 %, with
the highest value, for s®, reaching nearly 20 % as mean value. In the supercritical zone
the AAD values are usualy limited to 5 % at maximum. Results of the validation test
along the saturation line are shown in Tab. 9; the results for density are in particular

worse.



7. CONCLUSIONS

A new method for determining shape factors in the Extended Corresponding States
modelling framework is proposed. The approach requires an a priori anaytical form for
the shape factor functions and for this the Artificial Neural Networks (ANN), as very
versatile function approximators, have been applied. The shape factors are represented
through ANN as functions of the two independent variables temperature and density.
The ECS-NN EOS parameters are determined trough a minimisation procedure. A
number of halogenated alkanes for which DEOS are presently available was assumed for
the study. The ECS-NN EoS capability in representing i T data in vapor, liquid and
supercritical zones was verified with an AAD between 0.026 and 0.5 %, which is
comparable to the analogous value of a multiparameters DEOS. The accuracy of the
model, trained on Pr T data, in representing residual potential functions was aso tested
obtaining AAD values generdly less than 0.8 % for liquid and less than 4 % for vapor
and supercritical zones. The ECS-NN EoS has been afterwards trained on R T data
generated through an original predictive volumetric model requiring a single saturated
liquid density value as input for each interest fluid. This makes the whole method
predictive, although with an expected dight decrease of accuracy. The AAD values on
PrT data are well less than 1 % in liquid and vapor, while in the supercritical zone they
reach 2.5 %. The AAD on residual potential functions are often under 1% for liquid and
generally under 4 % for vapor and supercritica zone. The comparison of the present
predictive ECS-NN model with the Huber-Ely one [1] shows that in the liquid and
supercritical zones the results are comparable, though not uniform for the second model,
while the second model presents a marked worsening in the representation of the vapor

zone residua potentia functions.



The proposed model allows then to predictively obtain an ECS model, with localy

defined individual shape factors, which shows a good and equilibrated performance.
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Table 1: Dedicated equations of state (DE0S) and range of validity for the HA fluids
considered.

Fluid Formula T, min. T,max P, max Ref.
R11 CClsF 0.34 133 6.8 [7]
R12 CCl,F, 0.45 156 17.0 [8]
R22 CHCIR, 0.31 1.49 12.0 [9]
R32 CH,F, 0.45 143 10.3 [10]

R123 CHCLCF; 036 115 109  [11]
R125 CHF.CF; 051 1.47 187  [10]
R134a CH,FCF; 045 134 173 [12]
R152a CH;CHF, 040 113 6.7 [13]

Table 2: Training and validation grid stepsfor T, and P .

r

V apor Liquid  Supercrit.

T, step training 0.02 0.02 0.02
validation 0.01 0.01 0.01
P step tre'linir)g 0.05 0.5 0.5
validation 0.01 0.1 0.1

Table 3: Residua functions prediction accuracy without inversion for ECS-NN
trained on data generated from DEOS.

AAD %
Property Fluid vapor liquid supercrit.
R11 0.967 0.157 1.593
R22 0.445 0.054 0.456
R32 1.071 0.088 0.383
a® R123 0.520 0.236 0.197
R125 0.603 0.237 2.032
R152a 0.935 0.142 0.525
avg 0.757 0.151 0.982
R11 1.395 0.429 2.069
R22 0.817 0.258 1.444
. R32 0.980 0.223 1.431
Z R123 0.849 0.287 0.986
R125 0.958 0.371 1.772
R152a 0.983 0.321 0.950
avg 1.000 0.315 1.555
R11 3.474 0.619 2.867
R22 2.220 0.238 0.662
. R32 2.309 0.328 1.577
u R123 1.726 0.482 0.589
R125 3.488 0.465 4.709
R152a 2.179 0.259 0.2943
avg 2571 0.398 2.103

Overall 1.443 0.288 1.547




Table 4. Residual functions prediction accuracy with inversion for ECS-NN trained on data generated from DeoS.

7 a u" n" s" g" Inj

Flud vap. lig. sup. vap. lig. sup. vap. lig. sup. vap. liqq sup. vap. lig. sup. vap. lig. sup. vap. lig. sup.

R11 027 005 041 128 014 183 372 065 283 287 060 199 589 122 6502 129 012 138 106 054 181
R22 011 003 020 055 005 056 232 025 065 183 023 047 357 046 119 059 004 043 048 026 052
R32 037 014 037 133 013 052 264 036 175 225 033 138 349 063 271 125 011 053 115 0.26 042
R123 018 0.03 038 069 024 043 19 049 083 157 045 072 269 082 112 071 016 038 058 0.73 0.25
R125 020 0.03 039 075 023 207 362 045 481 272 042 337 594 078 965 074 019 149 065 044 222
R152a 035 005 050 121 014 074 241 028 048 203 026 047 315 058 051 118 011 062 1.01 024 0.69
Avg 024 006 036 097 0.15 113 278 041 219 221 038 159 415 0.75 398 09 012 0.88 082 041 111

Table 6. Residual functions prediction accuracy with inversion for ECS-NN trained on data generated from density model.

R R L R R

7 a u h 5 h Inj

Flud vap. lig. sup. vap. lig. sup. vap. lig. sup. vap. liqe sup. vap. lig. sup. vap. lig. sup. vap. lig. sup.
R11 018 022 085 097 041 155 480 071 237 360 066 193 817 131 379 104 035 148 088 144 136
R22 015 018 078 049 008 1.08 169 027 055 125 025 041 29 046 133 049 0.09 118 043 048 044
R32 08 159 731 308 126 123 105 29 383 7.75 263 461 171 598 518 323 107 11.7 259 200 10.0
R123 012 030 080 080 027 085 308 042 064 245 039 062 460 083 073 081 025 082 074 09 051
R125 015 036 204 179 039 344 320 0.69 531 237 061 424 545 129 967 162 035 353 178 0.63 279
R152a 033 070 260 194 050 274 6.02 096 151 485 087 134 849 172 241 191 041 253 178 0.62 176
Avg 027 056 255 150 049 4.10 487 100 267 370 090 247 777 193 438 150 042 398 136 102 321




Table 8. Residual functions prediction accuracy of the conventional ECS model (Huber-Ely, 1994).

Z a u" n" S g Inj
Flud | vap. lig. sup. | vap. liq. sup. vap. lig. sup. vap. lig. sup. wvap. lig. sup. vap. lig. sup. | vap. ligq. sup.
R11 167 065 113|125 09 295 233 140 346 195 132 307 326 275 441 119 087 264|116 292 299
R22 075 021 045|531 032 097 891 064 178 7.61 060 146 114 117 236 506 029 090|491 136 1.03
R32 257 096 240 147 102 6.19 203 102 7.07 186 0.89 6.49 238 267 862 141 092 557|136 156 581
R123 | 0.80 051 0.81]| 147 102 6.19 108 073 271 910 069 216 142 128 370 536 046 115|510 133 110
R125 | 091 050 1.19|530 046 250 158 090 799 126 084 582 235 160 149 528 045 223|472 072 167
R152a | 1.14 045 092|703 070 169 105 135 185 947 125 176 127 197 218 672 059 149|651 145 190
Avg 114 045 092|841 066 285 141 101 459 128 093 382 198 191 678 807 060 257|775 156 284

Table 5. Prediction accuracy at
saturation for ECS-NN trained on
datafrom DEOS.

Table 7. Prediction accuracy at

saturation for ECS-NN trained on data

from density model.

Table 9. Prediction accuracy at
saturation for conventional ECS
model (Huber-Ely, 1994).

Fluid Sat. vap.  Sat. lig. Sat. vap. Fluid Sat. vap.  Sat. lig. Sat. vap. Fluid Sat. vap.  Sat. lig. Sat. vap.
pressure density density pressure  density density pressure  density density
R11 0.650 0.189 1.162 R11 1.086 1.876 1.716 R11 1.079 3.355 5.418
R22 0.239 0.098 0.700 R22 0.341 0.212 0.674 R22 0.647 2.384 4.064
R32 0.432 1.155 1.392 R32 2.984 0.312 4.728 R32 0.661 4.438 7.445
R123 0.865 0.120 1.415 R123 0.869 0.128 1.381 R123 0.701 2.835 4.739
R125 0.993 0.147 1.155 R125 1.34 0.144 1.890 R125 1.705 2.407 3.151
R152a 0.651 0.536 1.203 R152a 1.351 0.733 2.109 R152a 3.032 3.643 7.54
Avg 0.638 0.374 1.171 Avg 1.325 0.567 2.083 Avg 1.304 3.177 5.392




Figure captions

Fig. 1. Three layers Feed-Forward Neural Network architecture.

Fig. 2. Percent error deviation on ajR(tj,dj) for the interest fluid R152a. ECS-NN

model trained on data generated from DEOS.

Fig. 3. Shape factor J, :Jj(tj,dj) for the interest fluid R152a. ECS-NN model trained

on data generated from DEOS.

Fig. 4. Shape factor f, =f J.(t j,dj) for the interest fluid R152a. ECS-NN model trained

on data generated from DEOS.
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